a. time it takes for half of the atoms in an isotope to

Date

Column I

_____ 1. absolute dating

Absolute Ages of Rocks

Directions: Match the terms in Column I with their definitions in Column II. Write the letter of the correct phrase in the blank at the left.

Column II

	2. half-life		decay
	3. radioactive decay	b.	breaking down of a neutron into a proton and an electron
	4. radiometric dating	c.	principle that Earth processes occurring today are similar to those that occurred in the past
<u> </u>	5. uniformitarianism	d.	process that uses the properties of atoms in rocks and other objects to determine their ages
		e.	calculating the absolute age of a rock by measuring the amounts of parent and daughter materials in a rock and by knowing the half-life of the parent material
Dire	ections: Follow the steps below to demo	nstrate	the radioactive decay of carbon-14. Then answer the questions.
1.	Cut a strip of paper 8 cm long. Thin	k of th	e paper as all of the carbon-14 in an animal when it died.
2.	The idea is to show how you find the age of a rock that contains an animal fossil by using the half-lives of isotopes. Cut the strip of paper in half.		
3.	Discard one half of the paper. This below with an X.	s repre	esents the decayed material. Record the cut in Item 6
4.	Continue by cutting the second h	alf of t	he paper in half. Record the cut below with an X.
5.	Continue Steps 3 and 4 until the pout you make with an X.	oaper i	s so small you cannot make another cut. Record each
6.	Number of cuts:		
			vere able (practically) to cut the sample in half?
8.	Each cut represents the half-life o by each cut?	f carbo	on-14. What is the total amount of time represented
9.	Multiply the number of cuts by the represented by the cuts?	ne half	-life of carbon-14. What is the total amount of time
10.	Could using the half-life of carbo	n-14 d	etermine when dinosaurs died? Explain.

Calculating Half-Lives

Directions: You learned in the chapter about the half lives of carbon-14 and radium. Here is a table of some other isotopes and their half-lives. Use the table to answer the questions that follow.

Isotope	Half-life
Plutonium-238	86 years
Americium-241	433 years
Curium-242	163 days
Berkelium-249	314 days
Californium-249	360 days
Einsteinium-253	20 days
Nobelium-259	1 1/2 hours
Lawrencium-260	180 seconds
Element 103-262	40 seconds

- 1. If you had a 100-gram sample of plutonium, how much would still remain in 43 years?
- 2. What happened to the part of the plutonium that is no longer there?
- 3. If you had a 5-gram sample of Lawrencium, how much would still remain in 30 minutes?
- 4. If you had a 100-gram sample of Einsteinium, how much would you have left after 40 days?
- 5. A rock sample contains 7.5 grams of Californium-249 and 52.5 grams of the product into which the Californium has changed. How old is the rock?