Earth Science Notes—Ch. 11 Earthquakes

- I. Why do earthquakes occur?
 - a. Pieces of the earth suddenly shift.
 - b. The crust is mostly cold and brittle rock compared to the hot rock deeper inside.
 - c. This crust is full of large and small cracks called ______.
 - d. These faults can be _____ long
 - e. Usually you cannot see the cracks because they are buried deep underground.
 - f. Also, the pieces of crust are compressed together very tightly.
 - g. Powerful forces cause these crustal pieces to move very slowly.
 - h. The plates may get stuck together for many years.
 - i. The forces pushing on the plates can cause them to break apart and move suddenly.

II. When do they slip?

- a. They slip when the rocks past their ______
- b. They move along ______.
- c. The rocks remain bent after an earthquake.
- III. Why do most earthquakes occur near plate boundaries?
 - a. Forces inside of the earth including:
 - i. _____
 - ii. _____
 - iii. _____
 - b. The movement occurs as an earthquake.

IV. WHERE DO MOST OCCUR?

- a. _____% of EQ occur along the pacific plate
- b. ____% of EQ occur along the Mediterranean-Asiatic belt
- c. ____% occur within interiors of plates or along oceanic ridge systems.

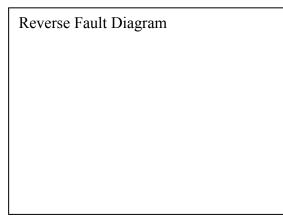
V. Types of faults

- a. Most earthquakes occur along plate boundaries.
- b. Different forces produce different fault types.
- c. What are the three forces?
 - i. <u>Compression</u>—force that _____.
 - ii. <u>Tension</u>—stress that causes ______.

NAME: _____

PERIOD: _____

iii. <u>Shear</u>—force that causes slippage and the rocks on either side of the fault to


- d. Normal Fault
 - i. What type of force? _____

•

ii. Rock above the fault surface moves ______

Normal Fault Diagram

- e. Reverse Fault
 - i. What type of force?
 - ii. Rock above the fault is _____

- f. Strike-Slip Faults (Transform Fault)
 - i. Rocks on either side of the fault are moving past each.
 - ii. There is no upward or downward movement

Strike-Slip Fault (Transform) Diagram

- iii. San Andreas Fault
 - i. Probably the best known example of a strike slip fault
 - ii. Largest Fault in California
 - iii. _____ Km through the state
 - iv. So, is California going to fall into the Pacific? (Why or why not?)

VI. What is a Seismic Wave?

- a. <u>Seismic Wave</u>____
- b. There are three types:
 - i. _____ Waves
 - ii. _____ Waves
 - iii. _____ Waves

VII. Earthquake Terminology

- a. Before we explain the three types of waves, we need some basic terminology.
- b. Focus (plural = foci)—_____
 - i. Most are within _____Km of the earth's surface.
 - ii. Some have been recorded as deep as _____ Km
 - iii. Waves travel outward in all directions
- c. <u>Epicenter</u>____

VIII. Types of Waves

- a. Primary Waves (P Waves)
 - i. Waves of energy released during an earthquake.
 - ii. Rock ______and _____as the wave moves.

P Wave Diagram

S Wave Diagram

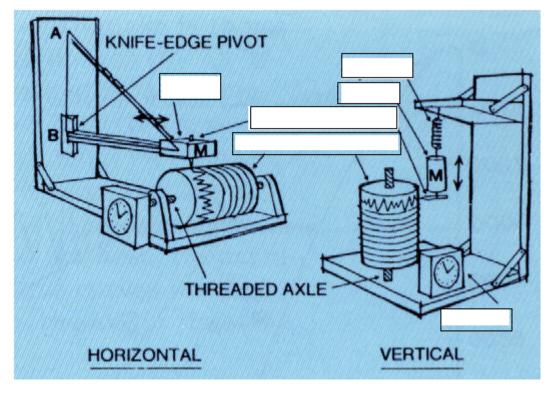
- b. Secondary Waves (S Waves)
 - i. Waves of energy released during an earthquake.
 - ii. Causing particles in rocks to move at _____

c. Surface Waves

- i. Waves of energy released during an earthquake.
- ii. They reach Earth's surface & travel outward from the epicenter in all directions.
- iii. Cause the most damage.
 - i. 2 Types
 - 1. Love Waves (Q-Waves)
 - I> Move rock particles in a backward rolling motion and a side-to-side, swaying motion

Surface (Love) Wave Diagram

2. Rayleigh Waves


- I> Rock particles move in a rolling motion.
- II> The slowest moving wave

Surface (Rayleigh) Wave Diagram

- iv. Why do surface waves cause so much damage?
 - i. ______ ii. _____
- v. When do surface waves occur?
 - i. Surface waves are produced when the earthquake energy reaches the Earth's surface.
 - ii. They travel: outward from the _____.
 - iii. This is the point: directly above the focus.
- d. How can we locate an epicenter?
 - i. Seismic waves all travel at different speeds.
 - i. _____waves are the fastest.
 - ii. _____waves are slower.
 - iii. ______waves are slower yet.
 - ii. How can we use this information?

i.

- ii. Example: Biking
- IX. History of the Seismograph Station
 - a. After serious earthquakes in China, the Chinese scientist and mathematician invented the first seismograph in 132 A.D. to predict the next one.
 - b. He called it an _____
 - i. When the ground shook, it moved a ______inside the jug.
 - ii. The pendulum pushed: a lever that opened the _____.
 - iii. The ball landed in the ______below, sounding an ______.
 - iv. The opened dragon's mouth: pointed in the direction of the earthquake, notifying the emperor.
- X. How does the modern seismograph work?
 - a. Today's seismographs have a rotating ______ and a ______with an attached pen.
 - b. Label the diagram of a modern seismograph.

XI. Seismograph Stations

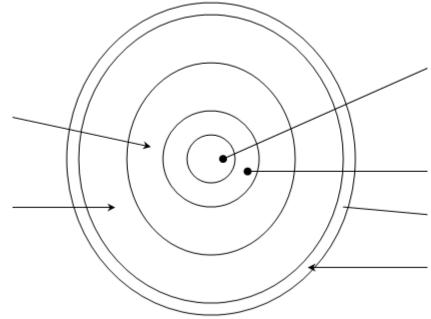
- a. Each type of seismic wave reaches a seismograph station at a different time, based on its speed.
- b. Which arrives first?

i.

c. Which arrives second?

i.

d. Which arrives last?


i.

- e. Since we know rates of travel for P and S waves, we can use a graph to determine distance from an epicenter.
 - i. P waves travel at:
 - ii. S waves travel at:
- f. Scientist use this to determine the:
 - i. _____
 - ii. Using this, we can determine distance to the epicenter.
 - iii. Data is then compared with other seismic stations.
- g. How many seismic stations does it take to locate the epicenter?
 - i. If you have one station, how many possible sites are there?
 - i. _____
 - ii. If you have two stations, how many possible sites are there?
 - i.iii. If you have three stations, how many possible sites are there?
 - iv. What would be the advantage of four sites?

i.

- i. _____
- XII. Mapping Earth's Interior
 - a. We know that at certain depths within Earth, that the speed and path of seismic waves change because of ______.

LAYERS OF THE EARTH

- i. Crust
 - i. <u>Crust (5-60 km)</u>—outer most layer.

 - 2. The ______is the plastic like layer below the lithosphere (also in the mantle).
 - 3. <u>Moho Discontinuity</u>—transition area (not layer) separates the crust from the Mantle.
 - I> Seismic waves speed up when they reach the bottom of the crust.
 - II> Discovered by and Yugoslavian scientist,

discovered that the waves were speeding up because they were passing into a denser layer of the <u>lithosphere</u>

—he

- Mantle, largest layer, mostly silicon, oxygen, magnesium, & iron. It is divided based on changes of seismic wave speed.
 - 1. Upper Mantle
 - I> Upper portion is called the asthenosphere since rock flows.

iii. <u>Outer Core</u> (2270 km) 1 iv. <u>Inner Core</u> (1216 km) 1			
iv. Inner Core (1216 km)			
1			
2. Pressure from above causes it to be			
b. Since speeds and paths of waves change with density, we can map out the layers of the			
earth.			
i. <u>Shadow Zone</u> :			
The reason follows:			
i. Secondary Waves—don't travel through liquid.			
ii Drimory Wayag, are glawed (hant by the liquid outer core			
ii. Primary Waves—are slowed/bent by the liquid outer core.			
iii. Simulation			
1. Look at what happens when waves hit the bottom of the crust,			
upper mantle, lower mantle, outer core, & inner core.			
 upper mantle, lower mantle, outer core, & inner core. 2. 1° & 2° waves slow down when they hit the <u>upper mantle</u> (because 			
2. 1° & 2° waves slow down when they hit the <u>upper mantle</u> (because			
 1° & 2° waves slow down when they hit the <u>upper mantle</u> (because it is plastic-like) 			
 1° & 2° waves slow down when they hit the <u>upper mantle</u> (because it is plastic-like) 1° & 2° speed up again as they pass through the solid <u>lower</u> 			
 1° & 2° waves slow down when they hit the <u>upper mantle</u> (because it is plastic-like) 1° & 2° speed up again as they pass through the solid <u>lower mantle</u>. 			
 1° & 2° waves slow down when they hit the <u>upper mantle</u> (because it is plastic-like) 1° & 2° speed up again as they pass through the solid <u>lower mantle</u>. 1° waves are slowed & deflected when they hit the outer core. 			
 1° & 2° waves slow down when they hit the <u>upper mantle</u> (because it is plastic-like) 1° & 2° speed up again as they pass through the solid <u>lower mantle</u>. 1° waves are slowed & deflected when they hit the outer core. 2° waves stop when they hit the outer core. (They can't pass 			
 1° & 2° waves slow down when they hit the <u>upper mantle</u> (because it is plastic-like) 1° & 2° speed up again as they pass through the solid <u>lower mantle</u>. 1° waves are slowed & deflected when they hit the outer core. 2° waves stop when they hit the outer core. (They can't pass through liquid) 			

waves are detected because of the last 2 facts.
1. 1° waves then speed up again when they travel through the solid inner core.

XIII.	Review

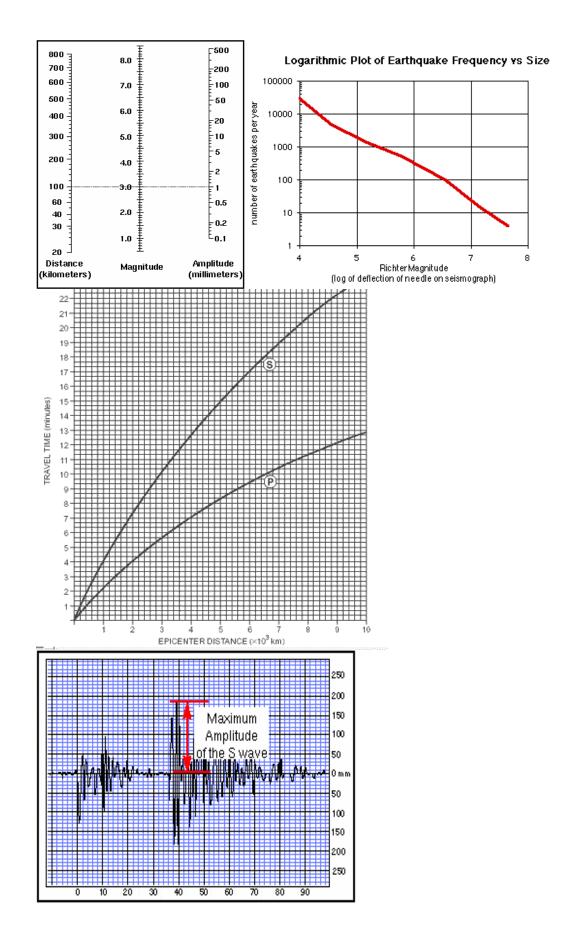
- a. Which type of seismic wave does the most damage to property? Why?
- b. Why is a seismic record from three locations needed to determine the position of an epicenter?

i. _____

c. Suppose an earthquake occurs at the San Andreas Fault. What area on Earth would experience no secondary waves?

i. _____

i. _____


d. Would China experience primary and secondary waves? Explain.

. 1.

XIV. Scientists who study earthquakes are called ______.

XV. Richter Scale

a. <u>Richter Magnitude</u>:

- b. If you know the distance to the epicenter and amplitude, you can calculate the magnitude. Let's try to determine the magnitude of the example seismogram in the upper right hand corner.
 - i. Calculate the amplitude?
 - ii. Calculate the SP Gap?
 - iii. Now use the S-P Graph to determine the epicenter location?
 - iv. So, what is the magnitude of this earthquake?
- c. Charles Richter (1934) developed the scale.
 - i. It is based on a ______ For every increase in 1 on the scale, the amplitude increases by _____.
 - ii. Note: the energy released for each increase of 1.0 is about

iii. Note: there is no high limit.

- i. However, the strongest recorded Earthquake was in Chile
- ii. More than _____EQ with magnitude 2 occur daily.
- d. For example: an earthquake of 5 would have amplitude 10 times greater than an earthquake of 4.
 - i. Ex: Compare an 8 to a 7.
 - ii. Energy released: for every increase in 1, 32 times more energy is released at the focus. Ex: Compare a 5 to a 3.
 - iii. Example:

i. Magnitude 1= energy released by _____ TNT

			ii. Magnitude 8 = energy released by of TNT		
	e.	Mome	ent Magnitude		
		i.	Based on		
		ii.	Derived by multiplying theby the		
	and then again by the				
		iii.	Related to strength and size of fault movement.		
	f.	Merca	lli Scale		
		i.	Giuseppe Mercalli (1902)—invented another way to measure an earthquakes strength.		
		ii.	This scale usesto determine intensity.		
			It is not considered as scientific. Some examples follow. i. 8—		
			 ii. 6—Slight to moderate damage in well built, ordinary structures. Considerable damage to poorly built structures. Some walls may fall. iii. 1 to 2— 		
	g.	and Small Scale Earthquakes			
		i.	Each year, aboutearthquakes are felt but cause little or no		
			damage—3.0 to 4.9.		
		ii.	More than 1,000 earthquakes with magnitudeoccur daily.		
		iii.	See table 1 (Pg 314)		
		iv.	Most deadly known earthquake: 1556 Shensi, China (Estimate of 9.7), 830,000		
			deaths.		
XVI.	Other Problems				
	a.	Lique	faction—		
	1		People should avoid building on loose soils in these areas.		
	b.	Tsuna i.	mis Three main causes of tsunamis:		

- i. ______ ii. ______ iii. ______
- ii. The ocean floor deforms.

- iii. This causes a displacement of water.
- iv. EQ under the sea causes abrupt movement of ocean floor.
- v. The movement pushes against the water, generating a powerful wave that travels to the surface.
- vi. After reaching the surface, the waves can travel thousands of km's in all directions.
- vii. Once they get near shore, they begin to rise above the surface as high as
- c. Tsunamis Warning System
 - i. The Pacific Tsunami Warning Center-near_____
 - ii. Provides predicted tsunami arrival times at coastal areas.
 - iii. This warning system is mostly for the Pacific Ocean.
 - iv. After the 2004 Tsunami, a expansion of the warning system was proposed.
 - v. By 2007, the US will have deployed 27 additional DART (Deep Ocean Assessment & Reporting of Tsunami) Buoys
 - vi. This will give the US almost

vii. Buoys

i. Anyone can view the data at any of the buoys at anytime.

d. Earthquake Safety

- i. Structures can be built seismic safe.
 - i. They stand up to vibrations
 - ii. Support buildings with ______ placed under the buildings.
 - iii. They are made of alternating layers of ______.
 - iv. Buildings should be able to survive an _____earthquake.
- ii. How can we make homes safe?

iii. What should you do in an earthquake?

- i. Move away from windows and any objects that could fall.
- ii. Seek shelter in a doorway or under a sturdy table or desk.
- iii. If outdoors, stay in open areas away from power lines
- iv. Stay away from buildings, chimneys, or other parts that may fall.
- iv. What about after an earthquake?
 - i. Check water and gas lines for damage
 - ii. Shut off valves if damaged
 - iii. If you smell gas, leave
 - iv. Be careful around broken glass and rubble.
 - v. Stay away from beaches-danger of tsunamis